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Abstract— This paper describes a targeted, undemanding
data-driven signal processing approach to identify, control, and
suppress a specific background noise which is present in a
recording together with a spoken utterance.

A background noise (like e.g. the sound of an engine onboard
a bus) negatively influences the ASR1 system performance by
distorting the speech signal spectrum. Thus it is necessary
to preprocess the signal in order to suppress the noise (or
preferably to dispose of it). A reliable outcome has been
currently achieved using source separation techniques like e.g.
ICA2 or PCA3 [3]. Unfortunately these techniques are both
computationally demanding and excessively aggressive to the
speech.

The hereinafter depicted denoising process at first uses a
newly proposed metric based upon a frequency-energy combi-
nation matrix to identify the nature of the background noise in
the signal. Then a noise profile is selected from a library and
applied onto the signal by means of spectral shaping (specifically
e.g. smoothed spectral subtraction).

The method is asymmetrical: The noise profiles are com-
puted from recordings of specific background noises taken in
railway station halls, buses, cars, etc. The profile processing is
performed offline. The online signal processing is efficient in
terms of computational costs—it uses the precomputed profiles
and works in real time.

The method is particularly suitable for utterances where the
background noise level reaches the level of the speech (i.e. when
the noise is at about 0 to -6 dB).

I. INTRODUCTION

The performance of contemporary ASR systems unwinds
above all from the quality of the training phase and the
quality and quantity of the used training material. The ro-
bustness of the systems against a background noise depends
on whether a background noise was present in the training
material and thus the system is trained to a noised speech.

The ASR systems that were trained with enough material
gathered in a real environment in which the system is
expected to operate reach impressive results of more than
97% accuracy. However, if such a system is operated in
an acoustically different environment with different kinds
of background noise the performance drops significantly—in
many cases below an acceptable level for a real-life operation
(see table IV below).

Nowadays most of the state-of-the-art ASR systems are
trained using a large set of recordings from a wide variety
of acoustic environments with diverse noises. Nonetheless

1Automatic Speech Recognition
2Independent Component Analysis
3Principal Component Analysis

there are still systems and applications where the training
material does not (and sometimes generally can not) cover
all possible acoustic environments and noises influencing the
recordings to recognize. In this case there must be a denois-
ing (or noise-conditioning) algorithm present to reduce the
negative impact of an unknown acoustic environment onto
the performance of the system.

II. DENOISING GENERALLY

There are generally two large groups of denoising tech-
niques: (i) simple filter-based techniques and more advanced
(ii) source separation techniques.

Simple denoising techniques are usually based on apriori
considerations about the character of the noise or more
generally of the whole acoustic environment. These tech-
niques have low computational demands and load and mostly
comprise of a FIR4 or IIR5 filter acting as a gate (or the so-
called pass filter).

At the beginning a representative amount of the recorded
material is observed and analysed using spectral analysis
techniques. These techniques reveal the presence of a spec-
trally localised noise and a pass filter can be designed to
remove it (or at least reduce it).

However, such a denoising strategy can be used only in the
cases when the noise is stable, i.e. it occurs in a certain fixed
region of the frequency spectrum. Such a situation happens
for example when the recording gear is of poor quality and
the AC6 network frequency 50 Hz leaks into the signal.

Unfortunately under real conditions the noise is variable
and only few ASR systems are deployed in a situation where
the background noise is at least quasi-stable.

The more advanced—both from computational and imple-
mentational point of view—denoising techniques are based
upon the so-called source separation (see [3]). These can
be regarded as “demixing” the recorded signal into a clean
speech and a background noise. If the sole noise signal was
known it could be easy to subtract it from the mixture of
the speech and the noise. Of course such an approach is
highly theoretical and under real conditions it is impossible to
isolate the noise from the mixture mainly for the fact that the
character (or features) of the noise is apriory unknown. The

4Finite Impulse Response filter; a digital filter without a feedback.
5Infinite Impulse Response filter; a digital filter with one or more feedback

loops (wherefore it can become unstable and produce an unlimited output).
6Alternating Current; an electric current whose direction reverses cycli-

cally.
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TABLE I
BACKGROUND NOISES AND ACOUSTIC ENVIRONMENTS

Environment Closer specification Length
[min:sec]

Diesel-powered car in city traffic, upto 50 km·h−1 17:23
Diesel-powered car on motorway, upto 130 km·h−1 22:04
Petrol-powered car in city traffic, upto 50 km·h−1 11:41
Petrol-powered car on motorway, upto 130 km·h−1 27:15
Small aircraft piston engine, level flight 15:11
Diesel-powered bus in city traffic 14:07
Trolleybus in city traffic 15:47
Trolleybus with aux diesel generator 5:21
Tram modern (2000), in city traffic 20:37
Tram old (late 1970s), in city traffic 27:06
Railway station hall 13:22
Busy city crossroad in centre of Plzeň, 167k inhab. 9:37

only way to fight this fundamental lack of knowledge is to es-
timate the features of the noise. If the apriori estimate is close
enough to reality (i.e. to the character of the background
noise present in the recording) the method proves excellent
performance which unfortunately drops dramatically in the
case that the estimate is not close enough.

As already mentioned in the abstract and evident from
the above said these techniques can be very aggressive to
the useful information included in the signal when working
with a bad estimate of the noise signal character. Thus the
denoising problem can be reduced7 to a searching for an
acceptable estimate of the noise.

III. NOISE PROFILES

The fundamental idea of the presented denoising approach
is to have a large set of various clean8 background noises.

A set of clean noises was recorded during the research
phase of the project: The set incorporates background noises
and acoustic environments that have been expected to appear
the most often in the recordings fed into our LASER9 ASR
system (details in [2]) when deployed in a reasonable real-
life application. The background noises were selected by a
common agreement of the involved researchers (i.e. at this
stage the process was not data-driven). Table I shows the
current contents of the set (on which the method was tested).
The recordings were made with the portable Sony MZ-
RH1 minidisk recorder and the Sennheiser MKE 2 lavalier
microphone in high-quality ATRAC mode. The recorded
material was processed in a below depicted way to obtain
the corresponding noise profiles.

7As the rest of the process has been solved for years within the field of
the digital signal processing.

8A “clean noise” in this context means that the recording contains the
noise only without any speech.

9LASER = LICS Automatic Speech Evaluator/Recognizer (where LICS
stands for Laboratory of Intelligent Communication Systems)

A. Noise Profile Computation

The noise profile P (which is necessary for further de-
noising) is an N ×N matrix of real numbers: p1,1 . . . p1,N

...
. . .

...
pN,1 . . . pN,N

 ,

where N is number of frequency bands (points of a power
spectrum) used in the spectral analysis of the signal. The
elements are:

pi,j =
M∑

m=1

O(Sm(i)
Cdr

− j)

M
(1)

O(x) =
{ 1 if |x| < 1

0 elsewhere (2)

where M is the total number of analysed frames of the signal,
Sm(i) is i-th point of a power spectrum of the m-th frame,
and Cdr is a constant specified below.

The noise profile matrix P is obtained by executing the
algorithm below (put down in a Pascal-like pseudocode):

01: let P(1..N, 1..N) = 0
02: for I = 1 to M do
03: let X(1..N) = power spectrum of the I-th frame
04: for J = 1 to N do
05: let S = X(J) / Cdr

06: if S > N then S = N endif
07: inc P(J, [S]) by 1

M
08: endfor
09: endfor

where M is the total number of frames of the processed
signal, N is the number of power spectrum points, Cdr is
a dynamic resolution constant with the value 195.3125 for
signed short integers (16-bit wide), and [S] means an integer
part of a real number S.

The Cdr constant is computed so that the maximal energy
in the averaged spectrum of the whole analysed material
is projected into the N-th row of the P matrix (i.e. if the
maximal energy found in the spectra is 100000.0 and N =
512, Cdr = 100000/512 = 195.3125).

By its nature, the noise profile records temporal frequen-
cies of occurrence of spectral energies.

B. Noise Profile Selection

As mentioned in section II a successful denoising strategy
comprises a knowledge of the noise signal character. Cur-
rently a set of clean noise signals (see table I) is available
from which the signal features can be easily obtained. Each
of these signals has a noise profile computed using the above
described algorithm. When denoising a recorded speech
signal it is necessary to compute the noise profile for it too10.
Then the closest of the prerecorded clean noise signals can
be find and used to denoise the recording.

10using the same algorithm
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The closest noise is chosen by minimising the distance
between the noise profile matrices and the profile matrix of
the signal to be denoised. The used metric to be minimised
is

d(A,B) =
N∑

i=1

N∑
j=1

√
(ai,j − bi,j)2, (3)

where A and B are N ×N profile matrices whose distance
is being determined.

IV. DENOISING USING THE SELECTED PROFILE

The clean noise profile which is the closest by the given
metric to the recorded utterance profile is the best one to
determine the noise features from for denoising (although
still sub-optimal).

It is self-evident that the noise in a real recording will not
be present in the noise corpus. However, it is not necessary.
The keystone of the method can be simply expressed by
the sentence: “A filtering using a noise profile derived from
the closest noise in the corpus must be more efficient than a
filtering using a generic profile.” The tests (see below) proved
it right.

A. Method 1—FIR pass filtering

A character of a background noise can be expressed (for
the subsequent denoising) e.g. by an averaged frame power
spectrum S computed via FFT11 from frame power spectrum
estimates:

S(i) =
∑M

m=1 Sm(i)
M

. (4)

The MATLAB code below shows how to use the averaged
power spectrum S to denoise the signal using a FIR pass
filter:

01: pows = pows ./ max(pows);
02: pows = 1 - pows;
03: freq = 0:1/256:1;
04: coeffs = firpm(128, freq(1:256), pows);
05: filtered = filter(coeffs, 1, raw);

The pows vector contains the averaged power spectrum S.
It is normalized (line 01) and inverted (line 02) to shape a
frequency response of the designed FIR filter. A FIR filter
is designed using the Parks-McClellan optimal equiripple
FIR filter design method (see [4]) at line 04. The filter is
then applied onto the noised signal (vector raw) at line 05.

No matter how simple this approach is (works in real time
even in MATLAB) it leads to acceptable results as shown
it table IV—mainly because of using the preselected sub-
optimal noise profile.

11Fast Fourier Transform; an algorithm of the integral transformation of
a signal from time to frequency domain.

TABLE II
NOISED DATA DESCRIPTION

Set Background noise description
noised001 Heavy city bus noise with an indistinct

background conversation mixed at 0 dB.
noised002 Typical squeaking trolleybus noise with in-

tensive background conversation (clearly in-
telligible) mixed at 0 dB.

noised006 Moderate diesel-powered car noise without
any background conversation mixed at -6
dB.

B. Method 2—Spectrum Shaping

The second tested method is based upon transforming
the whole signal being denoised into the frequency domain
by FFT, manipulating the obtained vector of frame power
spectra, and resynthesizing the signal via IFFT12 back to
temporal domain.

The manipulation used in the performed experiment was
the following:
(i) Subtraction of the averaged power spectrum S of the

preselected clean noise from a power spectrum of each
frame of the denoised signal.

(ii) Gaussian smoothing (using 2 neighbours at both sides
for 512-point spectrum) of the resulting quotient power
spectrum of each frame of the denoised signal.

V. RESULTS

The performance was measured (so far) on 3 large
sets of recordings, each containing 400 files. The over-
all length of the testing signal is 16:47. The noised
sets noisedXXX were prepared using the GNU/Linux
batch audio processing tool Ecasound released under GPL
from http://www.eca.cx/ecasound/ (as of August
2008).

The clean noise signals were mixed down with the clean
speech recordings from the LAC13 Chess corpus (a testing
set of the LASER ASR system) at given level—see the
detailed description in table II.

At first the ability to choose the right noise profile using
the method depicted in III-B was tested. As the programmatic
execution of the test was carried out in MATLAB, slightly
smaller sets were used14. For each noised recording, the
correct noise source was known and the method was tested
whether it selects the same—the achieved accuracy is shown
in table III.

When evaluating the performance of the denoising tech-
niques a baseline was set at first: The whole noised material
was fed into the LASER ASR system and its performance
was measured (referred to as Baseline). Then the noised
material was processed using method 1 described in IV-A
(referred to as Method 1) and method 2 described in IV-B

12Inverse FFT
13LICS Audio Corpus
14When trying to test on all 400 files of each set, MATLAB crashed with

“Not enough memory” error report.
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TABLE III
NOISE PROFILE SELECTION ACCURACY

Set Size Accuracy
noised001 380 files 100.0%
noised002 300 files 100.0%
noised006 300 files 98.0%

TABLE IV
ASR PERFORMACE ON NOISED AND DENOISED SIGNAL

Set Size Baseline Method 1 Method 2
noised001 400 files 39.70% 46.39% 42.61%
noised002 400 files 59.31% 44.17% 57.46%
noised006 400 files 92.94% 93.24% 86.25%

(referred to as Method 2). The ASR performance on both
the noised and denoised material is summarized in table IV.
The performance of the LASER ASR system on clean sets
was 97.23%.

VI. CONCLUSIONS

The results show a surprisingly accurate performance of
the noise profile identification algorithm which is far beyond
preliminary expectations. Even though some of the noise
signals in the set were very close one to another15—for
example the trolleybus noise and the noise of the trolleybus
with an auxiliary diesel generator—the method was capable
to differentiate them and choose the right one correctly. The
nearly 100% accuracy urges for further intensive testing.

On the other hand both two presented denoising techniques
proved more or less expected performance—units of percent.
An interesting result was achieved by Method 1 on the
noised002 set. The resulting accuracy is extremely low
compared to the baseline performance of the ASR system.
However, the fact (revealed by listening to the denoised
recording) is that the method worked very well: It removed
the unwanted speech presumed to be a part of the background
noise. Unfortunately it was not the background speech but
the (foreground) speech to be recognized. The signals were
mixed at 0 dB and thus the spoken utterances were recorded
with the same intensity from both background and fore-
ground.

To conclude the paper it can be stated that a surprisingly
efficient noise identification technique was developed and a
promising denoising strategy that does not show a perfect
performance but indicates a direction for further research.
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15At least from a subjective point of view after listening to the recordings.
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